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MINIMUM-DRAG DUCTED AND POINTED BODIES OF REVOLUTION BASED ON LINEARIZED
SUPERSONIC THEORY*

By HerumoN M. Parker

SUMMARY

The linearized drag integral for bodies of revolution at super-
sonic speeds is presented in a double-integral form which 18 not
based on slender-body approximations but which reduces to the
usual slender-body expression in the proper limit. With the aid
of a suitably chosen auziliary condition, the minimum-external-
wave-drag problem 1s solved for a transition section connecting
two semi-infinite cylinders. The projectile tip 18 @ special case
and is compared with the Von Kdrmdn projectile tip. Caleula-
lions are presented which indicate that the method of analysis
gives good first-order resulls in the moderate supersonic range.

INTRODUCTION

In making the slender-body approximation to the linear-
ized supersonic-flow theory for bodies of revolution, & basic
approximation leads to replacing the axial source distribu-
tion with the cross-sectional-area derivative. Slender-body
theory, therefore, becomes linear in the superposition sense
for cross-sectional areas as well as for sources or fields in
contrast to linear supersonic-flow theory which is linear in
the superposition sense for sources or fields but not for areas.
Malking the slender-body approximation, however, eliminates
a large part of the Mach number dependence of the results.
Lighthill (ref. 1) has shown that this basic approximation,
for sufficiently smooth bodies, has the same mathematical
order of accuracy as the linearized supersonic-flow equation.
Ward (vef. 2) has extended the generality of slender-body
theory by presenting a drag expression which is valid for a
body with a finite slope at the base. Lighthill (vef. 3) has,
at the price of & large increase in complexity, modified
slender-body theory to include area-derivative discontinu-
ities at o finite number of points.

In 1935 Von Kérmdn (ref. 4) determined the minimum-
wave-drag projectile tip. Later Sears (ref. 5) and Haack
(ref. 6) determined minimum-wave-drag shapes for projectile
tips and closed bodies of revolution subject to various com-
binations of auxiliary conditions of constant length, constant
caliber, and constant volume. The Von Kérmén tip and
the Sears-Haack bodies are based on slender-body theory.
In contrast to the minimum-drag bodies of given volume,
which are accepted as reasonably good first-order results, the
minimum-drag projectile tips and open-nosed bodies which

1Bapersedes NAOA TN 3189, 1954,

have been derived from slender-body theory are subject to
more severe restrictions on the range and conditions for
validity. Busemann (ref. 7) pointed out this fact for the
Von Kérmén projectile tip in 1941. In the late 1930’s
Ferrari made studies of the minimum-drag projectile tip
and length-caliber body problems. Recently, Ferrari (refs.
8 and 9) has considered the length-caliber body and ducted-
body minimum-drag problems on the basis of linear theory
without resorting to slender-body approximations. He ob-
tains source-distribution functions which involve elliptic in-
tegrals that have to be treated numerically.

This report presents the linearized-drag integral for bodies
of revolution in a double-integral form which is not based on
slender-body approximations but which reduces to Ward’s
drag expression in the proper limit. With the aid of a suit-
ably chosen auxiliary condition, the minimum-external-wave-
drag problem for a transition section connecting two semi-
infinite cylinders is solved. The source distribution, the
minimum-wave drag, the slopes at the ends of the section,
and the radius at one intermediate point are obtained in
terms of elementary functions. The entire shape is given
in an integral form amenable to numerical evaluation.

SYMBOLS

c constant factor in source-distribution func-
tion, ft/sec

Cp drag coefficient

D drag, 1b

f source-distribution function

f derivative of f with respect to its argument

M free-stream Mach number

r radius in cylindrical coordinates

R general radius of point on body

By radius of downstream cylinder

Ry radius of upstream cylinder

A’(z), A’”’(z) first and second derivatives of cross-sectional
area

U free-stream velocity, ft/sec

v, radial velocity, ft/sec

v axial velocity, ftfsec

z axial distance in cylindrical coordinates

%o position of first disturbance on control surface
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X axial distance for general point on body

B= A=

8f variation in derivative of source-distribution
function

p free-stream density, slugs/cu 1t

A arbitrary constant .

tn dummy variables of integration ‘

%0, M0 position on axis where sources begin

) disturbance potential )

All distances are made dimensionless by measuring t,hem
in the units of length of the transition section.

ANALYSIS

DRAG INTEGRAL

The linearized-flow equation for the case of axial symmetry
is (ref. 4)
0%, 10¢

b’qb
or 'ror 52 =0 1)

where ¢ is the disturbance potential, g?=A*—1, and M is
the free-stream Mach number. The general solution of
equation (1) is (ref. 10)

¢(I,r) = fof(x'_ﬂr cosh ’ll;)du: —_— fj—m —Jzzi:(g));_% (2)

The corresponding disturbance velocities are

gi—"‘(z”')=f:f'(x—ﬁr cosh w)du=— f _’""’ \/_(;{'_;)—szd_s?ﬁ
@)
and
%=”'(I’r)=—fof’(x—ﬁr cosh )8 cosh % du - -
=8 fE)E—HdE "

ce E—D—Br
The general solution is interpreted physically as the dis-

turbance potential of a distribution of axial sources. The

source-distribution function f(f) is fixed by satisfying the
boundary condition that the body surface be & stream
surface.

However, the drag integral may be reduced to & double integral in the following manner.
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Applying the momentum and continuity theorems to the
fluid within a eylindrical surface of radius R, and with the
symmetry axis parallel to the stream (hereinafter referred to
as the control surface) and using the fact that free-stream
conditions prevail at the two ends of the cylinder, = « and

=— », yield the usual expression for the drag (ref. 4)

D=—2zr f_: R (2, B)v, (z, Ry) d (5)

If a position z=L on the control surface is chosen so that,
for z= L, either v, or v, vanishes on the control surface, and
if @y is the position of the first disturbance on the control
surface, equation (5) reduces to

——2r fﬂ: oRy.(2,Br) 0, (z, R) dx ©

Substituting expressions (3) and (4) for the velocities into
equation (6), where f,=n,=x—pBR,, the position on the
axis where the sources begin, yields

AT

D—zrpf U ;%Jj(%(i)g—;%ﬁx ][L:‘”‘m )

e L G R e )
8

The basic slender-body approximation reduces the integral
over { in equation (7) to £(x). The use of equation 4) for

small values of » and the boundary condltlong U gives

f(z) proportional to the axial derivative of the cross-sectional
area. The slender-body approximation thus reduces the
integral of equation (8) to a double integral (over z and 9).
In principle, the integral in equation (8) may be reduced to
a double integral over £ and 5 by interchanging the order of
integration and performing the integration over z. 'When
this process is attempted in equation (8), however, the
integration over z involves elliptic integrals and no essential
advantage is gained.

Equation (8) is rewritton

with the dummy variables £ and » interchanged. Addition of the interchanged and original expressions and division by %

yield
'L z—f8R; [*z—

D=1rpf da:f ARJ‘ BB,y
%o & %

Interchanging the order of integration yields

_ﬂRl L —
Do
1) %o

IO (Wa—ttz—ndf dy ©)

fl(E)fl(ﬂ)dE dan.gR, -‘/('-'G'—E)?'—B’Rlx‘\/(x_ ' —p'Ey’

Ve —F RGP R?

(I—E'I'x_ﬂ)dx (10:
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where the lower limit of the integral over z is £-+8R; or n+ SR), whichever is the larger. The results of the integration

over z is (see the appendix for the details of the integration)

f “ (z—tt+a—n)de

l:cs;h1

EoR: V@—§?—BR* @—n)*—BR:*

and the drag becomes

D= . ” f ”R 701 cosh

C—DE—n—FRF  _ . |E—DE——FRS
B8R GE—7) D;gg cosh ™ | = = (1)
—)—FR?
BRG—7) 2)

LEquation (12) gives the drag of an axial distribution of sources f(£) which begins at & and is subject to the condition that
there is no momentum flow through the control cylinder of radius B, for z = L.

In the slender-body approximation, equation (12) reduces
to Ward’s drag expression as follows. Use of the expression
for the radial velocity (eq (4)) for small values of r and

the boundary condition (T:c_ﬁ give

fa=Z 4@ 13)

where A’ () is the axial derivative of the cross-sectional area.
For small values of R,, B8R, may be neglected in the limits of
the integrals in equation (12) and the cosh~ factor may be
approximated by

-1
cosh BRGE—n)

] —

BR,

log |g—n|—log == (4

Simple manipulation, based on the assumption that A’(%)
is continuous and A’ ()=0, gives the Ward drag formula

D=—EZ [ " 4@ Yog le— dedn +
24 [ 4 tog v~ @y og 2

@ 5)
MINIMUM-DRAG PROBLEM

The problem of determining the shape of & transition sec-
tion connecting two semi-infinite cylinders for minimum ex-
ternal wave drag may be formulated in the following way.
(See fig. 1.) The upstream and downsfream semi-infinite

~-X = axis

A
X AR, 1

Fiaure 1.—Configuration trested.

"Bl?z 0

cylinders are of radius R, and R;, respectively. The length
of the transition section is taken as the unit in which all
distances are measured. The cylinder of radius R, is chosen
as the control surface.

Figure 1 is drawn for the case R;<RE,. However, the
statement of the problem is the same as for B,> R, since only
the appropriate changes in sign occur. Equation (12) for
the drag becomes

1-8R, (1-BRy _, . L 1A—8H10—n)—FR?
D= ﬂ'pf f ® ' (n) cosh i ,331(;_,1) didn
(16)

The auxiliary condition for the minimum-wave-drag
problem is the requirement that the points =1, »=R,; and
=0, r=F; be on the same stream surface. In terms of
mass flow this condition requires that the free-stream mass
flow between the control cylinder of radius B, and the up-
stream cylinder of radius R; equals the mass flow out of the
control cylinder between z=8(R;— R;) and z=1; that is,

(R —Rf)— f ' 9rpRuwi(x,Bydz—Constant  (17)
#(r;—Ry) .

or

fl =R, f'(E)(x—E)dE d U(
#(r;~Ry) J -8Ry +/(z—£)*— )

R.*—R;®)=Constant
(18)

Equation (18) is a particularly convenient form of the
suxiliary condition in that the source-distribution function
is the only unknown involved. A direct integration of the
usual boundary condition would lead to an auxiliary condi-
tion involving, in addition, the unknown shape of the section.
Without further approximations, the minimum-drag prob-
lem would be unmanageable. It appears impossible to
obtain an auxiliary condition of constant volume involving
the source-distribution function as the only unknown.

Interchanging the order of integration in the left member
of equation (18) and integrating over z yield

5 5 @OyaT——FR de=5 (Re—R)=Constant (19)
By



114 REPORT 1213—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

The problem of minimizing the drag given by equation (16), subject to the auxiliary condition given by equation (19),
can be expressed in the usual manner of the calculus of variations. The expression

G(f': Rl: R2)= —8R,

1-pRy (18R ., ., 1 [A—)A—n)—FR:
7" g1 cost e

ainn [T TR (0

(where constant factors have been absorbed into the arbitrary constant A) must have a zero variation corresponding to an

arbitrary small variation §f’ in f’; that is,

G(f"l‘&f’, Rl: R‘X)—G(f,) R, R1)=0
Combining two terms, after interchanging dummy variables and neglecting the term involving (§f)? yields

ertar @[ [ o) costt (1A DB 4oy [ T—g AT | de=0 1)

Since the variation §f’ is arbitrary,

1-p%y ’ —1I(]-_"-:)(1_""1)'—521'212
. f—nxa F'() cosh | BR((—n) Idn+

A A—E—BRP=0 (22
An integration by parts, with f(—BR;)=0, yields

f 176”1 S(mdn
-br; (§—n)vQ—n)’—F R,

=\=Constant (23)

The integral equation (23) is the same equation that appears
in the minimum-induced-drag problem in lifting-line airfoil
theory.

The solution of the integral equation

J‘b@@= Constant
a b/

Cy+C
FP)=——dT
(y) NOo—y) y—a)

Therefore, the solution of equation (23) is

o) =(Cr— )4 1EE1 @

The condition that f(—pBR;)=0 requires that C,=CBR;
therefore,

f(n)=C+/(n+BR) L+BE,—1) (25)

The source-distribution function for minimum wave drag is
part of an ellipse. The constant C is fixed by satisfying the
auxiliary condition, equation (19). The final result for the
source-distribution function for minimum wave drag is

F= 4U (R —RyY)
WV w (1—BR+BRy) (1 +-38R,+BRy

v(n+BRy) (1+BR1—mn)
(26)

Figure 2, which has an arbitrary vertical scale, shows the
source distribution corresponding to the transition section
of minimum wave drag.

, \ _-x-oxis

|—,éﬁ’, ! 1+BR

1

Ficgore 2.—Source distribution (arbitrary vertical scale) corresponding
to transition section of minimum drag. Ellipse of which the distri-
bution is a part is shown by dashed curve.

MINIMUM-DRAG SHAPE

The expression for the minimum-drag shape is analogous to the auxiliary condition given by equation (17) except that a
control surface of arbitrary radius R is used, where R is the radius of the section at z=X (see fig. 1) ; the shape is given by

Uz ®—ED= |

>q
B(R~

27 pRv, (2, B)dz
Ry

2 f,, TR-R’) [ f B ] gl L P 27)

o7, V@' —FR?

Interchanging the order of integration, integrating over z, and substituting the source-distribution function yield

Ba(Rz_R22)= Bﬁa (RIQ_RSZ)

7 (1—BR1+BRy) (1+3BR+BED) J -z,

28
VEFBR)1+BR—D )

Since all the radii in equation (28) are multiplied by B, one calculation gives a family of shapes for which, at & given value
of X, BR(X)=Constant. Thus the minimum-drag shape obeys the G&thert similarity rule (vef. 11).
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At the general point (X, R), the integral in equation (28) involves elliptic integrals and cannot be evaluated in elementary
form. However, at one particular value of X, corrésponding to the center of the source-distribution ellipse, the integral
reduces to elementary functions. Thus, for

PR2—= (B°B. +B°Ry)(1+BR+BR:)’—8R, RS’ (20)
2[(1+BR1+BR:)*—2(8°B*+B°R4")

Equation (28) may be solved by numerical-graphical methods. By a change of variable of the form
1+ﬁR1—”5R2+1+ﬁR1+ﬁR2
2 2

£=

cos @

equation (28) is converted into the following form suitable for numerical integration:

— —3
cosso\[(X—l_l-‘%;1 B, 1+BR5+BR2 cos 0) —BR* d§
= thoy
The slope of the transition section at the general point (X, R) is found by differentiating equation (28). The result is

14+8R,—BR; 1} 8R,—BR; -1
dGE)_ 0 (x-on () e [1 e G i) L ] o
" RU J-sr, EHBRIATBR—DVX—O"—FE L ' U J-#r JEFBR)AFBR—H VX~ —FR°

For the general point, equation (31) is not integrable in elementary form. However, at the downstream end of the section
(X=1, R=R,) it may be integrated directly. The result is

AR AR (1-+ER R (o EEDGHRpR)

,3=(R’—Ra’)—,,(l_ﬁRl+,sR,)(1+3ﬂRl+ﬁRa)

EZ) =[Ja‘RI (t+pR—BRy)(1+BR:+36R) 1]“‘ )
-1 | +2(FR —p'R:*)+1+BR+BR;
At the upstream end of the section, equation (31) may be evaluated by 2 suitable limiting process. For example, if R=R;
and X=¢ (where ¢ is a small quantity), the integrals in equation (31) may be evaluated if ¢ is neglected in comparison with

quantities of the order of unity.

After the evaluation, e is allowed to vanish, and the result is

[ ] [lw/EE(l—ﬁR1+ﬁRx)(l+3ﬁR1+BRn)]—l
= V2y14+BR.+BR: (B R —F'R)

For R;=0 (the projectile tip), the front slope is equal to the slope of the Mach cone.

for Rl #Rz.
MINIMUM WAVE DRAG
The expression for the minimum wave drag is obtained by
inserting the source-distribution function (eq. (26)) into the

drag integral (eq. (16)). The expression for the drag of the
transition section is

2 PRI—RH
D=0 3R, 1 FR (1T 3pR T AR (89

and the drag coefficient (based on the area of the section
projected on a plane normal to its axis) is

_ 4RA—Rd
Oo={—BR, -8R0+ 36T FED (85)

REVERSIBILITY

The results for the reverse-flow case may be obtained
formally from the preceding direct-flow case by interchang-

(33)

The back slope is different from zero

ing B, and RB;. If, in addition, X is replaced by 1—X, the
X-station will be measured from the same end of the con-
figuration. The transition-section-shape expression (eq.
(28)) can be shown to be an invariant relation between X
and R under the transformation

Bi—R,
Ra‘—)Rl
X>1—X.

Since the present analysis is a linear treatment, the reversi-
bility of the minimum-drag shape cannot be considered as
established to an order higher than the first.

The drag coefficient (eq. (35)) is not symmetrical in R,
and B;. However, 8?0y is symmetrical to the first order in
the smell quantities SR, and SR, or, if SR, and BR; are not
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small, §2°C}, is symmetrical to the first order in the quantities
BR,—BR. and BR;—BR,. The minimum wave drag thus is
the same to the first order in the appropriate small quantities
for the direct-flow and reverse-flow cases.

DISCUSSION OF RESULTS

The drag integral (eq. (12)) presented in this report de-
pends upon the source-distribution function in the same way
(except for slightly different weights of the kernel functions)
that the slender-body drag expression (eq. (15)) depends
upon the cross-sectional-area derivative. Since bodies with
area-derivative discontinuities can be generated by continu-
ous source distributions, equation (12) gives finite drag for
certain types of bodies (for example, bodies with shoulders
forward of the base) for which the usual slender-body drag
expression diverges. The drag integral presented herein is
thus applicable to & larger class of bodies than the Ward
drag expression.

Some indication of the range of validity of equation (12)
is given by a comparison of the values of drag calculated by
various methods for several cones. Figures 3 (a), 3 (b),
and 3 (c) present cone drag coefficients plotted against SR,
for semivertex cones of 5°, 10°, and 15°, respectively. The
drags are calculated by the following methods:

Method A—The drag integral (eq. (12)) with mass-low
continuity (eq. (17) with R;=0) used as the boundary
condition. Since the continuity condition is used in deriving
the drag integral, this method uses a consistent boundary
condition.

Method B—The solution of the linearized supersonic-flow
equation for a cone (f'(£)=Constant) used with the exact

Z_::Uflzv) and the exact pressure

boundary condition

equation. This method meay be called the exact linear

method. Van Dyke (ref. 12) has presented cone drags by
this method.
Method C—The exact characteristics method for conical

flow as given by reference 13.
Method D—The drag integral (eq. (12)) with the boundary

condition %in- This method was used only for the 5°

cone. FHach of the figures also shows the drag of the mini-
mum-drag projectile tip of the same thickness ratio as was
determined in the present analysis (curve I in fig. 3).
Figures 3 (2), 3 (b), and 3 (c¢) show that the drag integral
with the continuity boundary condition (method A) gives
cone drags closer to the exact value (method C) than the
exact linear method (method B) for values of SR; less than
approximately 0.30. From a comparison of methods A and
D for the 5° cone, the divergence of the cone drag calculated
by method A as BR,—1.0 is seen to be caused by the use of
the mass-flow continuity boundary condition. These results
indicate that equation (12) with equation (17) as the bound-
ary condition gives good first-order results for Mach numbers
above the transonic range and less than the Mach number

-
Tt
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at which the tangent of the Mach angle is less than approxi-
mately three times the slope of the body, that is, & moderate
supersonic range.

Projectile tip (R;=0).—Figure 4 presents two familics
of minimum-drag projectile-tip shapes (8R;==0.2 and 0.4)
calculated by equation (30). The Von Kdrmén projectile

.Os:k
.05
N\
\\\‘
04 \\\,\
\
N 5\
AN = Method
03 I e N
\Q I
02 —~
\\\1
@ ]
$ o1
€ 20
°
3 A
16 \
g LR
o ] Method
(b) —
08
40 <
30 S| Method
B - 0]
(c)
5—o5 16 15 20 25 30 35 40
BAR,
Method A | Drag integral with mass-flow-continuity bound-
ary condition
Method B | Exact linear method
Method C | Exact characteristics method from referenco 13
Method D | Drag integral with %=‘i,—”_’—u
I Drag coefficient of minimum-drag projeotile tip
(a) 5° cone.
(b) 10° cone.
(¢) 15° cone.

Fiaure 3.—Comparison of drag coefficients for three cones determined
by several methods and for minimum-drag projectile tip of same
thickness ratio as the cone.
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tip and the limiting case 8R;=1.0 are shown for comparison.
The Mach number and thickness-ratio dependence are
related by the fact that the minimum-drag shape obeys the
(Gothert similarity rule (ref. 11). The slope at the base
varies from zero to the cone slope as gR; varies from 0 to 1.0.
In both the Von Kdrmén analysis and the present analysis
the basic assumptions of linearized theory are strongly
violated at the nose of the projectile tip. Specific results of
ecither analysis at the nose therefore cannot be accepted with
confidence. However, inasmuch as linear theory often
qualitatively predicts correct trends even outside its range
of quantitative validity, it is interesting to note that in both
analyses the nose of the minimum-drag projectile tip is as
blunt as the analysis will allow (infinite slope for the Von
Kdrmén tip and tangent to the Mach cone in the present
analysis)., It is probably true that the exact shape of a
projectile tip for minimum wave drag has a blunt nose.
TFigure 5 presents the ratio of the minimum-wave-drag
coefficient based on the base area to the Von Kérmén drag
coefficient as o function of SR;. The ratio has a minimum
value at BR,=0.33 and diverges as SR;—1.0. The results

20
Von Kdrmdn-~
t:ls = BR,
3 0.2~
o 7
“6 .IO [~ .4,/ -
2 0"
‘é 051
Q
1 L 1 1 ] ] ] 1 I |
0 2 4 6 8 1.0

Dist'ance along cn;is, X

TFroure 4,—Minimum-drag projectile-tip shapes. Von Kérmén
projectile tip is shown for comparison.

1.2

@
c, ,
Von Kdrmdn
[e)

®
T

(3 J‘. 1

] 4
BAR,

)
B 8

Figure 5—Ratio of minimum-wave-drag coefficient to Von K4rmén
drag coeflicient as a function of S8R;.

for the cone discussed previously suggest that the drag
diverges as BE;—1.0 because of the use of mass-flow con-
tinuity (eq. (17)) for the boundary condition and that the
resulfs are reasonably good for SR, less than about 0.3.

General case.—Figure 6 presents the radius at an inter-
mediate point and the slopes at the two ends of the mini-
mum-external-wave-drag transition section for four configu-
rations with BR;—pBR;=0.4. Figure 7 presents these three
quantities for five configurations for which gR,—BR.=0.05.
Equations (29), (82), and (33) indicate that for SR, — Ry <3

(BR1—BR)(1+BR.—BR

and ﬁRl+ﬁR2 > 1—'3(ﬂR1_‘ﬂRg)
verse curve lying within the truncated cone connecting the
two cylinders for a distance downstream of the nose which
increases as BR,—pBR, decreases. The entire shape was
calculated by equation (30) for the case BR;—8E:=0.05 and
BR,+B8R,=0.118, which corresponds {0 the minimum front
glope for SR,—pBR;=0.05 (shown in fig. 7). This reverse-
curve effect is more pronounced in the range of small values
of BR,—BR,, the range where the linearized treatment is
certainly correct.

For a comparison with the general case, the drag of a
truncated-cone section for SR,— gR;=0.05, BR,+SR,=0.118,
and f=1 was calculated by the method of reference 14.
The truncated-cone drag coefficient (0.0228) is 18 percent
higher than the minimum drag coefficient (0.0193).

2 the shape is a re-

L] ) 1 ] ] 1 1 1 ~ 1 1 ]

0 2 4 6 8 1.0 1.2
Distance along axis, X

Ficure 6.—Radius at intermediate point and slopes at two ends of
minimum-external-drag transition section for four configurations.
BR;—BRy=0.4.
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CONCLUDING REMARKS

The drag integral for bodies of revolution at supersonic
speeds is presented in a double-integral form depending ex-
plicitly upon the source-distribution function. The drag
integral is applicable to a larger class of bodies than the usual
slender-body drag expression and reduces to the Ward drag
expression in the proper limit. Results for cones indicate
that the drag integral with mass-flow continuity as the
boundary condition gives good first-order results in the mod-
erate supersonic range.

The minimum-wave-drag problem for a transition section
connecting two semi-infinite cylinders is solved with the aid
of a suitably chosen auxiliary condition. The source distri-
bution, the minimum drag, the slopes at the two ends of the
section, and the radius at an intermediate point are obtained
in terms of elementary functions. The entire shape 18 ob-
tained in an integral form amenable to numerical evaluation.
The minimum-drag shape obeys the Gothert similarity rule.
The minimum-drag shape and the minimum drag are un-
changed to the first order when the flow direction is reversed.
The projectile tip is & special case and is compared with the
Von Kérmén projectile tip.

LANGLEY ABRONAUTICAL LIABORATORY,
NatioNaL Apvisory COMMITTEE FOR AERONATUTICS,
Laneuey Fmwp, Va., March 1, 195/.

B S ! 1 [l 1 j

- - 1 1 1 )
o) 2 4 6 8 1.0 1.2
Distance aléng axis, X

Froure 7.—Radius at intermediate point and slopes at two ends of
minimum-external-drag transition section for five configurations.
BR1—BRy=0.05. Entire contour shown for 8R,4-8R;=0.118.

APPENDIX
INTEGRATION IN EQUATION (11) »

The integral of equation (11) is
={ (z—Ettz—n)de
srom@—8)'— BRI — ' —FR’

(A1)

where the lower limit is the larger of the two quantities
¢8R, or n+BR,. The equation may be evaluated in the
following manner. In order to convert the radicand in the
denominator of the integrand into a quadratic function of the
square of the integration variable, the variable is changed by

using
o=+ LT (A2)
Substitution of equation (A2) into equation (A1) gives

I=J::L = E— 2 2SdS . ~\3 12
° \/ Si—2 (—2—1’ +8* Rlz] s +|: §2_ﬂ —p Rlx]
(A3)

where S, and S, are the appropriate limits for the variable S.
Since the numerator of the integrand in equation (A3) is an
odd polynomial in S, considerable simplification is effected
by taking a new variable z proportional to S?, such that

s=et(157) +erms v

Substituting equation (A4) into equation (A3) yields

I @s

%

I=f: z’—ﬂ“R?’(E—n)’_[cosh~l IERl(z_—n)
or

(x—§)(@z—n)—FR, ]L
ﬁRl(f—"fl) l 5152:

—onihet |L—H L —n—FR/|
cosh ‘I A G—) ll (A8)

I=l:cosh~1
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